

Computer Science Department
cs.salemstate.edu

CSC 115 Software Design and Programming II 4 cr. DII

Instructor: TBA Office: location Phone: (978) 542-extension
email: TBA@salemstate.edu Office Hours: days and times

Section

Time

Room

Final Exam

nn

days and times

location

date and time
Lnn

days and times

location

Catalog description:

This course extends the treatment of object-oriented methodologies, languages and tools begun in CSC110. The emphasis is
on the analysis of complex problems, particularly those involving multiple design alternatives, and the use of class libraries.
Fundamental strategies for algorithm design are presented and discussed. Specific topics include inheritance, polymorphism,
recursion, stream and file I/O, exceptions, and graphical interface programming. Style, documentation, solution robustness, and
conformance with specifications are emphasized throughout. Three lecture hours and three hours of scheduled laboratory per
week, plus extensive programming work outside of class.

Prerequisite: CSC110 or ITE 210.

Goals:

The purpose of this course is to enhance and extend students' understanding of tools and techniques for object-oriented
software development. Upon completion of the course, a student should be able to do the following:

CG01: analyze a problem statement for completeness and clarity;
CG02: use the methodology of object-oriented design to develop class diagrams (data descriptions and methods) for a

problem solution;
CG03: demonstrate understanding of and apply fundamental strategies for algorithm design;
CG04: convert this solution into source code in the designated high-level programming language in accordance with a

well-defined set of style rules;
CG05: debug and test the program;
CG06: provide clear documentation for the result.

Objectives:
 By the end of the course students will have:

CO01: gained a deeper understanding of object-oriented design methodology;
CO02: learned to recognize situations in which multiple design alternatives are possible;
CO03: applied fundamental algorithm design strategies;
CO04: learned to recognize and apply design patterns;
CO05: learned and utilized techniques for validation and verification of programs;
CO06: gained experience in judging the effectiveness and cost of a software design;
CO07: gained experience in choosing among competing design alternatives;
CO08: gained experience in the use of the UML modeling language;
CO09: extended their knowledge of an object-oriented programming language, including graphical user interfaces, event-

driven programs, file-based input/output, and the use of libraries;
CO10: produced full documentation for multiple completed projects, including formal class diagrams;
CO11: participated in one or more group projects.

mailto:TBA@salemstate.edu

Student Outcome (SO) vs. Course Objectives matrix

SO

CO01

CO02

CO03

CO04

CO05

CO06

CO07

CO08

CO09 CO10 CO11

SO-1

SO-2

SO-3

SO-4

SO-5

SO-6

Notes:

SO-1: Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify
solutions.

SO-2: Design, implement, and evaluate a computing‐based solution to meet a given set of computing requirements in the
context of the program’s discipline.

SO-3: Communicate effectively in a variety of professional contexts.
SO-4: Recognize professional responsibilities and make informed judgments in computing practice based on legal and

ethical principles.
SO-5: Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
SO-6: Apply computer science theory and software development fundamentals to produce computing-based solutions.

Topics (using Java and UML):

 review of: SDF2(1, 0, 0), PL1(2, 0, 0), SDF1(1, 0, 0), SE5(1, 0, 0)
° basic design concepts
° Java syntax
° UML
° the concept of incremental development

 designing for reuse SDF1(0.5, 0, 0)
 discovering and applying design patterns SDF1(0.5, 0, 0)
 fundamentals of algorithm design AL2(2, 0, 0)

° strategic approaches
 Greedy, Divide and Conquer, Dynamic (Feedback, Retrospective)

° comparison of approaches – advantages and disadvantages
 functional programming SDF1(1, 0, 0)

o Effect-free programming PL2(1,0,0)
o first-class functions (taking, returning, and storing functions) PL2(3, 0, 0)

 subclasses and inheritance SDF1(2, 0, 0), PL1(0, 2, 0)
 file-based input and output SDF2(2, 0, 0)
 exceptions and exception handling SDF4(2, 0, 0)
 polymorphism PL1(0, 1.5, 0), SDF1(1, 0, 0)
 data organization and retrieval

° sorting algorithms SDF1(1, 0, 0), AL3(1, 0, 0)
° searching algorithms SDF1(1, 0, 0), AL3(1, 0, 0)
° performance analysis AL1(2, 0, 0)
° testing and validation SE7(0, 1, 0), SE3(1, 0, 0), SDF4(1, 0, 0)

 interfaces SDF1(1, 0, 0), PL1(0, 1.5, 0)
 recursion SDF2(2, 0, 0)
 survey of class libraries PL1(0, 1, 0)
 programmer-developed windows and frames SDF4(3, 0, 0), HCI1(2, 0, 0), HCI2(0, 2, 0)
 multidimensional arrays SDF3(2)

Programming assignments: Approximately six programming assignments are given. One or more of these may be

group projects. Each programming assignment involves the design, writing, testing and debugging of a program and the
submission of an appropriate laboratory report. Each assignment has a specific due date, with a short grace period during
which the assignment may be submitted for reduced credit. When the grace period has expired, the assignment will no longer
be accepted.

All programs must be coded in the programming language currently used for instruction in the CSC201J/202J sequence -
no exceptions will be allowed. The version of the language being used will be the currently accepted standard version: any
extensions or variations in student-owned compilers must be approved in advance by the instructor, who may choose to
forbid their use.

Laboratory exercises: There will be short programming exercises to be completed during weekly scheduled laboratory
sessions. Each exercise focuses on a specific language feature or programming technique presented in recent lectures.
Performance on these exercises will be incorporated into the course grade.

Exams and quizzes: There will be a midterm examination and a comprehensive written two-hour final examination.

Final grades will be determined on the basis of the following approximate weights: examinations - 40%, programming
assignments and lab exercises - 60%.

Course Objective / Assessment Mechanism matrix

 Test / Quiz
Questions

Homework
Problems

Programming
Projects

Lab
Exercises

CO01
CO02
CO03
CO04
CO05
CO06
CO07
CO08
CO09
CO10
CO11

Bibliography:

Bloch, Joshua. Effective Java. Third Edition Addison-Wesley Professional, 2018.
Deitel, Harvey; Deitel, Paul. Java How to Program: Early Objects Version. Eleventh Edition. Pearson, 2017.
Evans, Benjamin J.; Flanagan, David. Java in a Nutshell: A Desktop Quick Reference. Seventh Edition. O'Reilly,

2019.
Farrell, Joyce. Java Programming. Ninth Edition. Cengage Learning, 2018.
Gaddis, Tony. Starting Out with Java: Early Objects. Sixth Edition. Pearson, 2017.
Gaddis, Tony. Starting Out with Java: From Control Structures through Object. Sixth Edition. Pearson, 2019.
Horstmann, Cay. Big Java: Early Object. Seventh Edition. John Wiley & Sons, 2019.
Horstmann, Cay S. Core Java ™, Volume I—Fundamentals. Eleventh Edition. Prentice Hall, 2018.
Horstmann, Cay S. Core Java ™, Volume 2—Advanced Features. Eleventh Edition. Prentice Hall, 2018.
Liang, Y. Daniel. Introduction to Java Programming and Data Structures, Comprehensive Version. Eleventh

Edition. Pearson, 2017.
Lewis, John; Loftus, William. Java Software Solutions. Nineth Edition. Pearson, 2017.
Schildt, Herbert. Java 7: The Complete Reference. Eleventh Edition. McGraw-Hill, 2018.

Academic Integrity Statement:
 “Salem State University assumes that all students come to the University with serious educational intent and expects them to
be mature, responsible individuals who will exhibit high standards of honesty and personal conduct in their academic life. All

forms of academic dishonesty are considered to be serious offences against the University community. The University will apply
sanctions when student conduct interferes with the University primary responsibility of ensuring its educational objectives.”
Consult the University catalog for further details on Academic Integrity Regulations and, in particular, the University definition of
academic dishonesty.
 The Academic Integrity Policy and Regulations can be found in the University Catalog and on the University website
(http://catalog.salemstate.edu/content.php?catoid=13&navoid=1295#Academic_Integrity). The formal regulations are extensive
and detailed - familiarize yourself with them if you have not previously done so. A concise summary of and direct quote from the
regulations: "Materials (written or otherwise) submitted to fulfill academic requirements must represent a student's own efforts".
Submission of other's work as one's own without proper attribution is in direct violation of the University's Policy and will be dealt
with according to the University's formal Procedures. Copying without attribution is considered cheating in an academic
environment - simply put, do not do it!

University-Declared Critical Emergency Statement:
 In the event of a university-declared emergency, Salem State University reserves the right to alter this course plan. Students
should refer to www.salemstate.edu for further information and updates. The course attendance policy stays in effect until there is
a university-declared critical emergency.
 In the event of an emergency, please refer to the alternative educational plans for this course, which will be distributed via
standing class communication protocols. Students should review the plans and act accordingly. Any required material that may be
necessary will have been previously distributed to students electronically or will be made available as needed via email and/or
Internet access.

Equal Access Statement:
 "Salem State University is committed to providing equal access to the educational experience for all students in compliance
with Section 504 of The Rehabilitation Act and The Americans with Disabilities Act and to providing all reasonable academic
accommodations, aids and adjustments. Any student who has a documented disability requiring an accommodation, aid or
adjustment should speak with the instructor immediately. Students with Disabilities who have not previously done so should
provide documentation to and schedule an appointment with the Office for Students with Disabilities and obtain appropriate
services."

Note: This syllabus represents the intended structure of the course for the semester. If changes are necessary,
students will be notified in writing and via email.

http://catalog.salemstate.edu/content.php?catoid=13&navoid=1295#Academic_Integrity
http://www.salemstate.edu/

